Tuesday, June 12, 2012
Next Generation Encryption Algorithms
Cisco Blog > Security
Panos Kampanakis | June 12, 2012 at 9:43 am PST
Over the years, numerous cryptographic algorithms have been developed and used in many different protocols and functions. Cryptography is by no means static. Steady advances in computing and in the science of cryptanalysis have made it necessary to continually adopt newer, stronger algorithms, and larger key sizes. Older algorithms are supported in current products to ensure backward compatibility and interoperability. However, some older algorithms and key sizes no longer provide adequate protection from modern threats and should be replaced.
Over the years, some cryptographic algorithms have been deprecated, “broken,” attacked, or proven to be insecure. There have been research publications that compromise or affect the perceived security of almost all algorithms by using reduced step attacks or others (known plaintext, bit flip, and more). Additionally, every year advances in computing reduce the cost of information processing and data storage to retain effective security. Because of Moore’s law, and a similar empirical law for storage costs, symmetric cryptographic keys must grow by 1 bit every 18 months. For an encryption system to have a useful shelf life and securely interoperate with other devices throughout its life span, the system should provide security for 10 or more years into the future. The use of good cryptography is more important now than ever before because of the very real threat of well-funded and knowledgeable attackers.
Next Generation Encryption (NGE) technologies satisfy the security requirements described above while using cryptographic algorithms that scale better. For more information on Legacy, Acceptable, Recommended and NGE algorithms that should be avoided or used in your networks, you can refer to our latest Whitepaper.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment